(t-1)(t+1)(t^2+1)=0

Simple and best practice solution for (t-1)(t+1)(t^2+1)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (t-1)(t+1)(t^2+1)=0 equation:



(t-1)(t+1)(t^2+1)=0
We use the square of the difference formula
t^2-1=0
a = 1; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·1·(-1)
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{4}=2$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2}{2*1}=\frac{-2}{2} =-1 $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2}{2*1}=\frac{2}{2} =1 $

See similar equations:

| 570-360+1/6=n | | -8v+5(v-8)=-10 | | 6-4m=6 | | |12x+18|=10 | | 6.8=9.2-0.3x | | 3x+4+11(1-4x)=1+x-2(x-16) | | tX12=10+2 | | 39x+59=700 | | 6x-7+103-x=2x | | (x-3x)-(-7+x)+20=18 | | -3(-7w+6)-3w=3(w-6)-3 | | 49m/15=52/15 | | X-27=-27=-(27-x) | | |x-22|=-7x | | 9=4x-28 | | -6(r-6)+4=-6(1+r) | | 5-2(x+4)=3x+6 | | g+3g=4 | | 10-2n=-28 | | {x+6}{3}=6 | | -8x+3(x-2)=-3+2 | | 6+x/3=-45 | | -1/2(x-6)=-1/4(8x+12) | | -7(-3k-8)-3k=92 | | 156+x=189 | | 2(x-1)+6=4x+1-2(4+x) | | 8-6m=4+48 | | g/16=7 | | 400+3x+500=12x | | 0.666+0.375m=1.54166666666667 | | 8y+13=19 | | a=60-9 |

Equations solver categories